Visual Detection of Bacterial Pathogens via PNA-Based Padlock Probe Assembly and Isothermal Amplification of DNAzymes
نویسندگان
چکیده
We have developed a self-reporting isothermal system for visual bacterial pathogen detection with single base resolution. The new DNA diagnostic is based on combination of peptide nucleic acid (PNA) technology, rolling circle amplification (RCA) and DNAzymes. PNAs are used as exceedingly selective chemical tools that bind genomic DNA at a predetermined sequence under nondenaturing conditions. After assembly of the PNA-DNA construct a padlock probe is circularized on the free strand. The probe incorporates a G-quadruplex structure flanked by nicking enzyme recognition sites. The assembled circle serves as a template for a novel hybrid RCA strategy that allows for exponential amplification and production of short single-stranded DNA pieces. These DNA fragments fold into G-quadruplex structures and when complexed with hemin become functional DNAzymes. The catalytic activity of each DNAzyme unit leads to colorimetric detection and provides the second amplification step. The combination of PNA, RCA, and DNAzymes allows for sequence-specific and highly sensitive detection of bacteria with a colorimetric output observed with the naked eye. Herein, we apply this method for the discrimination of Escherichia coli, Salmonella typhimurium, and Clostridium difficile genomes.
منابع مشابه
Fluorescence imaging of single-copy DNA sequences within the human genome using PNA-directed padlock probe assembly.
We present an approach for fluorescent in situ detection of short, single-copy sequences within genomic DNA in human cells. The single-copy sensitivity and single-base specificity of our method is achieved due to the combination of three components. First, a peptide nucleic acid (PNA) probe locally opens a chosen target site, which allows a padlock DNA probe to access the site and become ligate...
متن کاملDetection and identification of IHN and ISA viruses by isothermal DNA amplification in microcapillary tubes.
Unique base sequences derived from RNA of both infectious hematopoietic necrosis virus (IHNV) and infectious salmon anemia virus (ISAV) were detected and identified using a combination of surface-associated molecular padlock DNA probes (MPPs) and rolling circle amplification (RCA) in microcapillary tubes. DNA oligonucleotides with base sequences identical to RNA obtained from IHNV or ISAV were ...
متن کاملReal-time detection of H5N1 influenza virus through hyperbranched rolling circle amplification.
An isothermal amplification method was developed for the sensitive detection of the H5N1 influenza virus. The padlock probe specifically bound to the H5N1 target and circularized with T4 DNA ligase enzyme. Then this circular probe was amplified by hyperbranched rolling circle amplification (HRCA) using Phi29 DNA polymerase. The fluorescence intensity was recorded at different intervals by inter...
متن کاملDetection of Nucleic Acid Targets Using Ramified Rolling Circle DNA Amplification: A Single Nucleotide Polymorphism Assay Model
BACKGROUND Isothermal amplification methods provide alternatives to PCR that may be preferable for some nucleic acid target detection tasks. Among current isothermal target detection methods, ramified rolling circle amplification (RAM) of single-stranded DNA circles that are formed by ligation of linear DNA probes (C-probes or padlock probes) offers a unique target detection system by linked pr...
متن کاملIn situ detection of Anaplasma spp. by DNA target-primed rolling-circle amplification of a padlock probe and intracellular colocalization with immunofluorescently labeled host cell von Willebrand factor.
Endothelial cell culture and preliminary immunofluorescent staining of Anaplasma-infected tissues suggest that endothelial cells may be an in vivo nidus of mammalian infection. To investigate endothelial cells and other potentially cryptic sites of Anaplasma sp. infection in mammalian tissues, a sensitive and specific isothermal in situ technique to detect localized Anaplasma gene sequences by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 86 شماره
صفحات -
تاریخ انتشار 2014